https://www.mand-ycmm.org/index.php/eatij/issue/feed Engineering and Technology International Journal 2025-07-18T08:26:26+00:00 Sholihul Abidin cendikiamuliamandiri@gmail.com Open Journal Systems <p style="text-align: justify;"><span style="font-family: Helvetica, sans-serif;">Engineering And Technology International Journal (EATIJ) is a scientific journal published by the Cendikia Mulia Mandiri Foundation for the development of publications for researchers in the field of Engineering and Technology in Indonesia, and as a means of publishing research results and sharing the development of engineering science and technology. which have never been published before in the form of research or applied research articles, articles related to technological developments and management used in the industrial world. All submitted articles will go through a 'peer-review process' after meeting the requirements according to the article writing guidelines. This journal is published every four months, namely in March, July and November.</span></p> <p><span style="font-family: helvetica; font-size: small;"><strong>E - ISSN : 2714-755X<br />Prefix DOI : 10.556442<br />Editor Jurnal Engineering and Technology International Journal (EATIJ)<br /></strong></span><span style="font-family: helvetica; font-size: small;"><strong><span style="color: #5f6368; font-family: Roboto, RobotoDraft, Helvetica, Arial, sans-serif; font-size: 14px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: center; text-indent: 0px; text-transform: none; white-space: nowrap; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;"><strong style="box-sizing: border-box; font-weight: bolder; color: rgba(0, 0, 0, 0.87); font-family: helvetica; font-size: small; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">Frequency 3 Issue in 1 Years<br />Published : Vol.1 ( Maret ) - Vol.2 ( Juli ) - Vol.3 ( Nopember )<br /><br /></strong></span></strong></span></p> https://www.mand-ycmm.org/index.php/eatij/article/view/1004 Penerapan K-Means Clustering pada Absensi Mahasiswa Semester Ganjil untuk Mengelompokkan Kehadiran Mahasiswa 2025-05-27T01:49:36+00:00 Rezti Deawinda Parinduri rezti@um-tapsel.ac.id <p><em>Kedisiplinan mahasiswa dalam hal kehadiran menjadi indikator penting dalam menjamin mutu pembelajaran di perguruan tinggi. Penelitian ini bertujuan untuk menganalisis pola kehadiran mahasiswa pada mata kuliah semester ganjil dengan menerapkan algoritma K-Means Clustering sebagai bagian dari proses Knowledge Discovery in Database (KDD). Hipotesis penelitian menyatakan bahwa mahasiswa dapat dikelompokkan ke dalam kategori tingkat kehadiran yang berbeda secara signifikan. Data yang digunakan berupa absensi 35 mahasiswa selama 16 pertemuan. Proses penelitian mencakup tahapan KDD: pengumpulan data, pra-pemrosesan, penerapan algoritma K-Means, visualisasi dengan PCA, serta evaluasi menggunakan Silhouette Score. Hasil menunjukkan terbentuknya tiga cluster: kehadiran tinggi (90%), sedang (70%), dan rendah (50%), dengan skor siluet rata-rata sebesar 0.72 yang menunjukkan pemisahan cluster yang cukup baik. Kesimpulannya, algoritma K-Means efektif dalam mengelompokkan pola kehadiran mahasiswa secara objektif. Saran diberikan agar pihak universitas menggunakan hasil ini sebagai dasar perumusan kebijakan peningkatan kedisiplinan. Penelitian ini penting sebagai langkah awal dalam memahami perilaku mahasiswa berbasis data dan dapat dikembangkan lebih lanjut dengan menambahkan variabel serta mengeksplorasi algoritma lain. </em></p> 2025-07-04T00:00:00+00:00 Copyright (c) 2025 Engineering and Technology International Journal https://www.mand-ycmm.org/index.php/eatij/article/view/1081 Digital Image Processing Current Trends, Technologies, and Innovations Across Various Fields 2025-07-18T08:26:26+00:00 Sherly Agustini sherly@gmail.com <p>This study aims to examine the latest trends, technological developments, and innovative applications of digital image processing across various sectors. Using a qualitative descriptive method with a literature review approach, the research analyzes ten recent and relevant scholarly articles published between 2017 and 2025. The findings reveal a significant shift toward deep learning-based methods, particularly convolutional neural networks (CNNs), which dominate tasks such as classification, segmentation, and object detection. Digital image processing is increasingly applied in healthcare, agriculture, industrial automation, traffic surveillance, and smart city infrastructure. The integration with real-time systems and Industrial Internet of Things (IIoT), as well as the availability of large public datasets, has further accelerated innovation in this field. Despite its advancements, challenges such as high computational requirements, ethical concerns, and the need for large-scale annotated data remain. This research highlights the importance of interdisciplinary approaches and responsible AI development to address these limitations and maximize the potential of image processing technologies in real-world applications.</p> 2025-07-18T00:00:00+00:00 Copyright (c) 2025 Engineering and Technology International Journal